Résumé : Quantitative trait loci (QTL) affecting fatness in male chickens were previously identified on chromosome 5 (GGA5) in a three-generation design derived from two experimental chicken lines divergently selected for abdominal fat weight. A new design, established from the same pure lines, produced...Quantitative trait loci (QTL) affecting fatness in male chickens were previously identified on chromosome 5 (GGA5) in a three-generation design derived from two experimental chicken lines divergently selected for abdominal fat weight. A new design, established from the same pure lines, produced 407 F2 progenies (males and females) from 4 F1-sire families. Body weight and abdominal fat were measured on the F2 at 9 wk of age. In each sire family, selective genotyping was carried out for 48 extreme individuals for abdominal fat using seven microsatellite markers from GGA5. QTL analyses confirmed the presence of QTL for fatness on GGA5 and identified a QTL by sex interaction. By crossing one F1 sire heterozygous at the QTL with lean line dams, three recombinant backcross 1 (BC1) males were produced and their QTL genotypes were assessed in backcross 2 (BC2) progenies. These results confirmed the QTL by sex interaction identified in the F2 generation and they allow mapping of the female QTL to less than 8 Mb at the distal part of the GGA5. They also indicate that fat QTL alleles were segregating in both fat and lean lines.
401967 : Bibliothèque générale de Rennes (Sciences animales)
Résumé : Quantitative trait loci (QTL) for abdominal fatness and breast muscle weight were investigated in a three-generation design performed by inter-crossing two experimental meat-type chicken lines that were divergently selected on abdominal fatness. A total of 585 F2 male offspring from 5 F1 sires...Quantitative trait loci (QTL) for abdominal fatness and breast muscle weight were investigated in a three-generation design performed by inter-crossing two experimental meat-type chicken lines that were divergently selected on abdominal fatness. A total of 585 F2 male offspring from 5 F1 sires and 38 F1 dams were recorded at 8 weeks of age for live body, abdominal fat and breast muscle weights. One hundred-twenty nine microsatellite markers, evenly located throughout the genome and heterozygous for most of the F1 sires, were used for genotyping the F2 birds. In each sire family, those offspring exhibiting the most extreme values for each trait were genotyped. Multipoint QTL analyses using maximum likelihood methods were performed for abdominal fat and breast muscle weights, which were corrected for the effects of 8-week body weight, dam and hatching group. Isolated markers were assessed by analyses of variance. Two significant QTL were identified on chromosomes 1 and 5 with effects of about one within-family residual standard deviation. One breast muscle QTL was identified on GGA1 with an effect of 2.0 within-family residual standard deviation.
401123 : Bibliothèque générale de Rennes (Sciences animales) - Cote = UMR GA
Résumé : BACKGROUND: The resolution of radiation hybrid (RH) maps is intermediate between that of the genetic and BAC (Bacterial Artificial Chromosome) contig maps. Moreover, once framework RH maps of a genome have been constructed, a quick location of markers by simple PCR on the RH panel is possible....BACKGROUND: The resolution of radiation hybrid (RH) maps is intermediate between that of the genetic and BAC (Bacterial Artificial Chromosome) contig maps. Moreover, once framework RH maps of a genome have been constructed, a quick location of markers by simple PCR on the RH panel is possible. The chicken ChickRH6 panel recently produced was used here to construct a high resolution RH map of chicken GGA5. To confirm the validity of the map and to provide valuable comparative mapping information, both markers from the genetic map and a high number of ESTs (Expressed Sequence Tags) were used. Finally, this RH map was used for testing the accuracy of the chicken genome assembly for chromosome 5. RESULTS: A total of 169 markers (21 microsatellites and 148 ESTs) were typed on the ChickRH6 RH panel, of which 134 were assigned to GGA5. The final map is composed of 73 framework markers extending over a 1315.6 cR distance. The remaining 61 markers were placed alongside the framework markers within confidence intervals. CONCLUSION: The high resolution framework map obtained in this study has markers covering the entire chicken chromosome 5 and reveals the existence of a high number of rearrangements when compared to the human genome. Only two discrepancies were observed in relation to the sequence assembly recently reported for this chromosome
Résumé : To identify the genes directly responsible, through DNA polymorphism, for the difference in fatness observed between a lean and a fat chicken line, we studied five genes (ACL, ACC, FAS, ME, SCD1) encoding key enzymes involved in liver fatty acid synthesis and secretion. Genetic linkage was tested...To identify the genes directly responsible, through DNA polymorphism, for the difference in fatness observed between a lean and a fat chicken line, we studied five genes (ACL, ACC, FAS, ME, SCD1) encoding key enzymes involved in liver fatty acid synthesis and secretion. Genetic linkage was tested between polymorphic sites in the genes and the fatness trait segregating in an F2 design obtained by inter-crossing the two fat and lean lines. Despite a confirmation of a higher mRNA level in the fat birds, no genetic linkage of the gene alleles with the phenotype could be found. As a test of the implication of upstream regulatory transcription factors, SREPB genes were also studied. The lack of genetic linkage of SREBP genes with fatness shows that these genes are not directly responsible through polymorphism for fatness variability in our model. Moreover, the similar SREBP mRNA levels observed between the two lines led us to exclude also transcriptional factors regulating the two SREBP genes as being directly responsible for fatness variability. However, the genes involved in post-translational modifications of SREBPs remain candidates to investigate. These results emphasised the interest to perform expression and genetic linkage studies jointly, to progress in identifying the genetic origin of variability of a quantitative trait